我国力争2030年前实现碳达峰,2060年前实现碳中和,这是以习近平同志为核心的党中央经过深思熟虑做出的重大战略决策. 实现碳达峰、碳中和,是我国实现可持续发展、高质量发展的内在要求,也是推动构建人类命运共同体的必然选择,需在构建清洁低碳安全高效的能源体系、开发绿色低碳技术、完善绿色低碳政策和市场体系、提升生态碳汇能力等多领域付出巨大努力,这必将推动我国经济和社会的系统性变革. 本专栏围绕碳中和实现路径、碳减排效果评估、碳市场建设、可持续能源政策、能源-环境-经济系统模型、大气污染物与温室气体协同控制、负碳技术开发等主题,报道碳中和理论与实践研究最新成果,以期为我国如期实现2030年前碳达峰、2060年前碳中和的目标提供科技支撑. 探寻我国低成本碳达峰、碳中和路径,以我国主要耗煤产业、电力、供热、交通以及森林碳汇量为研究对象,构建基于低成本碳达峰、碳中和路径的多目标模型.以成本最小、二氧化碳排放量最少以及大气污染物排放量最少为模型的多目标,以我国2030年前碳达峰以及2060年前碳中和为研究目标设置相应约束条件,并设置产业需求、电力需求、供暖需求、交通需求、各行业新能源比例、污染物控制等约束条件,其中产业考虑煤炭消耗量较大的钢铁、化工、建材以及其他行业,电力考虑火电、核电、风电、太阳能.此外,模型除考虑森林碳汇外,还考虑了碳捕获与封存(CCS)作为实现碳达峰、碳中和的技术手段.结果表明:①我国碳达峰、碳中和实现的可行性较高,2030年及2060年的时间节点设定科学,碳达峰当年的各行业成本约为17.54×1012元,代表行业碳达峰、碳中和时的二氧化碳排放量分别为68.63×108和34.50×108 t.②以钢铁、化工、建材等为代表的工业转型可行性较低,且对于碳达峰、碳中和目标实现的贡献较小;电力、供热以及交通转型可行性较高,且对碳达峰、碳中和目标实现的贡献较大,电力二氧化碳排放量占比在2030年与2060年将分别达72.86%和43.34%.③煤电装机容量将在规划期内持续减少,需取消部分已规划的煤电项目并改造和提前淘汰部分已有煤电设备;相对风力发电与太阳能发电装机容量持续增加,二者装机容量总和于2030年达12×108 kW,于2060年达24×108 kW.④CCS将为碳达峰、碳中和目标实现提供助力.研究显示,未来我国碳减排工作将重点聚焦于电力系统,其次为供热与交通,建议根据行业特征制定不同省份、不同经济圈的绿色发展模式.文章链接:http://www.hjkxyj.org.cn/cn/article/doi/10.13198/j.issn.1001-6929.2021.06.18
查看更多 >我们做什么? Campbell Scientific 的环境传感器监测站(ESS)在监测道路天气条件中发挥了重要的作用。其坚固性和低功耗,使它们可以在恶劣条件下长时间工作。我们的系统是非常灵活的,允许定制以满足不断变化的需求。可以测量、记录和通信传输(NTCIP兼容)多种类型的道路天气信息,为道路警报和定期维护提供有效的数据。 Campbell Scientific 还为 RWIS 行业带来了客户控制技术™ (CCT) 的新概念,允许客户指定“同类最佳”硬件和 PC 软件,包括来自其他 CCT 供应商的产品。因此,客户可以从定制的、经济的替代老一代“一刀切”的基于 PC 硬件的产品中受益。典型配置典型系统包括塔、RPU、两个道路传感器和远程通信硬件,以及用于测量风速和风向、气温、湿度、气压、太阳辐射和降水的传感器。硬件Lufft 智能道路传感器道路温度(最多两个额外的地下温度测量,可选)残盐含量及冷冻温度计算路面状况——干、湿、湿、冰、雪水膜水平PWS100 当前天气传感器识别多种降水类型,包括毛毛雨、雨、雪、冰雹和霰专为在不利条件下连续、长期、无人看管的操作而设计与我们大多数当代数据记录器兼容软件LoggerNet 数据记录器 (RPU) 支持软件LoggerNet 是一个基于服务器应用程序和多个客户端应用程序的全功能软件包。LoggerNet 的开放式架构允许客户直接修改 RPU 应用程序或完全在客户控制下开发新的自定义指令集。LoggerNet 按需或按计划(包括有关 ESS 硬件和软件的诊断信息)在 ESS 或通过许多遥测选项远程收集和存档 NTCIP 数据和摄像机图像。遥测选项包括陆线、小区、LOS RF 和卫星。所有收集的数据都可以导出到第二方分析包。检索到的数据归客户所有,并且可以重新分配给其他用户,而对 CSI 没有义务。RTMCPro 实时监控软件RTMCPro 用于创建实时数据和摄像机图像的自定义显示。它提供数字、表格和图形数据显示对象以及警报。客户可以在一个显示器上组合来自多个 ESS/RPU 的数据。可以在多个选项卡式窗口上组织复杂的显示。Road Aware™ 是在 RTMCPro 中使用的基础项目文件,针对 RWIS 应用程序进行了优化。它可以在客户控制下进行复制或扩展,以将更多的 ESS 站添加到网络或增加数据显示和显示布局的功能和定制。RTMC 网络服务器RTMC Web 服务器将实时数据显示转换为 HTML 文件,允许通过 Internet 浏览器共享显示。
查看更多 >你有没有听过有人提到“ET”并想知道它是什么意思?假设这个人不是在谈论外星人或今夜娱乐,那么谈话可能是关于蒸散。蒸散(或“ET”)是通过植物蒸腾以及土壤和植物蒸发而损失的水分。下面的图片有助于解释什么是 ET 以及它是如何发生的。蒸发蒸腾(ET)是蒸发和蒸腾的结合。蒸发是水分从潮湿的土壤和叶子表面运动。蒸腾作用是通过植物的水分运动。这种水运动有助于将重要的营养物质通过植物。编辑搜图蒸散(ET)是一个能量驱动的过程。ET 随温度、太阳辐射和风的增加而增加。ET 随着湿度的增加而降低。那么,了解 ET 究竟有什么帮助呢?您可以使用 ET 来确定何时以及需要多少灌溉水。一个常见的用途是草坪草灌溉。例如,如果您的灌溉系统在一次灌溉事件中使用 0.5 英寸的水,并且连续 2 天没有降雨且 ET 损失值为 0.25 英寸,则您需要在这 2 天后进行灌溉。计算参考蒸散量通过一些天气测量和站点位置信息,您可以使用数学公式来估计“参考蒸发量”。注意:总降雨量不是参考蒸散量的一部分,应根据需要进行补偿。例如,一天总降雨量为 0.15 英寸,同一天的 ET 值为 0.25 英寸,则净损失为 0.10 英寸。使用参考蒸发量公式时,这些是您需要的天气测量值及其重要性:太阳辐射 – 取决于条件,最多占方程式的 80%。气温——与风速并列第二。风速——与气温并列第二。相对湿度——当空气非常干燥或非常潮湿时会产生明显的影响。除了这些天气测量之外,您还需要风速传感器的高度,以及站点位置的纬度、经度和海拔高度。提示:气象站的站点位置非常重要。将您的气象站放置在能很好地代表感兴趣的作物的位置是理想的选择。例如,使用草坪草,您的气象站应该被草皮包围,并远离树木和建筑物,这些树木和建筑物会影响气象站传感器所经历的风和阳光照射。为了获得更多技术性信息,以下是估算参考蒸散量背后的科学: ASCE 标准化参考蒸散方程在哪里:ET深圳= 短 (ET os ) 或高 (ET rs ) 表面的标准化参考作物蒸散量(mm d -1用于每日时间步长或 mm h -1用于每小时时间步长),Rn _= 计算的作物表面净辐射(MJ m -2 d -1用于每日时间步长或 MJ m -2 h -1用于每小时时间步长),G= 土壤表面的土壤热通量密度(每日时间步长为MJ m -2 d -1或每小时时间步长 MJ m -2 h -1),吨= 1.5 至 2.5 米高度 (°C) 处的每日或每小时平均气温,你2= 2 米高处的平均每日或每小时风速 (ms -1 ),es _= 1.5 至 2.5 米高度处的饱和蒸气压 (kPa),按每日时间步长计算为最高和最低气温下饱和蒸气压的平均值,一个_= 1.5 至 2.5 米高度处的平均实际蒸气压 (kPa),Δ= 饱和蒸气压-温度曲线的斜率 (kPa °C -1 ),C= 焓湿常数 (kPa °C -1 ),C n= 随参考类型和计算时间步长变化的分子常数(K mm s 3 Mg -1 d -1或 K mm s 3 Mg -1 h -1)和光盘_= 随参考类型和计算时间步长 (sm -1 ) 变化的分母常数。0.408 系数的单位是 m 2 mm MJ -1。一天的天气数据和计算的 ET 值示例时间戳平均太阳能 W/M 2平均空气温度F平均空气相对湿度平均风MPHET 英寸9:00 AM463.965.5951.835.20.0110:00 AM394.267.8251.083.640.0111:00 AM468.170.9246.212.90.0112:00 PM88076.8938.742.750.021:00 PM94082.4932.012.470.03下午 2:0085685.9821.94.520.03下午3:0081388.2715.683.20.034:00 PM693.188.9914.894.610.025:00 PM532.989.0215.384.260.02下午 6:00370.889.9615.312.710.01下午7时00192.888.5418.722.270.018:00 PM36.5382.7123.884.2509:00 PM0.1882.2915.156.880下午10:00079.1421.335.690晚上 11:00077.8121.662.81012:00 AM071.1334.358.710凌晨1:00066.9440.5312.690凌晨 2:00063.7947.48.220上午3:00061.3452.93.210早上4:00058.6659.11.8805:00 AM0.8655.965.982.090上午6:0043.3555.268.561.4507:00 AM214.160.359.443.420.018:00 AM393.564.0852.493.70.01总标准差0.22
查看更多 >在重大天气事件期间,有时我们可能会听到新闻记者表示当地河流预计将在未来 12 小时内达到估计的阶段水位。什么是波峰和舞台级别,它们对我有何影响?基本上,波峰是在特定事件的特定位置开始退水之前预期或测量的高水位。事件可能是暴雨、飓风或春季融雪,导致当地溪流、河流或其他水体的水位升高。通常,根据高水位最有可能造成损害或威胁生命的位置来指定位置。阶段是基于固定的局部参考点或基准并在水体上的固定位置的水位术语。对参考点进行测量以获得精确的海拔高度,通常与平均海平面相关。基于多年监测和分析每个测量点的数据,可以做出合理的预测,包括预测河流中的水量、安全的水位以及洪水将发生的水位。监测这些地点已经持续了几十年,在某些情况下,已经持续了 100 多年。今天——使用现场级的自动化数据采集系统——通常每 15 分钟进行一次载物台测量。这个 15 分钟的阶段数据提供了对被监测水体动态的深入了解。然而,在一个事件中,实际波峰通常会出现在两个 15 分钟的采集点之间,并且由于采样速度不够快而错过了对实际波峰的测量。为了捕捉波峰,除了自动系统之外,通常还使用手动量规。这是一个牢固地安装在桥墩或其他实体结构上的实心管。管子底部的孔和顶部的通风孔允许水进入管子,与水的主体处于同一水平。刻度尺杆固定在管内并靠在基准销上,这有助于确保杆杆始终处于相同的高度。将软木材料小心地放入管中,软木材料漂浮在水面上。软木塞粘在水面上的标杆上,随着水的退去,软木塞指示波峰测量值。此方法识别波峰级别,但不给出检测波峰的时间或日期,它仅捕获站点访问之间的最高事件。A:刻度尺(安装在管道内)B:管帽C:支架D:固定安装结构E:进水孔随着技术的发展和发展,曾经只能手动进行的测量现在可以实现自动化。Campbell Scientific 的LevelVUE™B10是一种水位传感器,现在可以自动测量波峰读数。LevelVUE™B10 水位传感器基于间接压力测量来确定水位。这种技术通常被称为起泡器。起泡式水位传感器被广泛使用,因为它们提供稳定的数据并且不需要安装静止井。通常,起泡器用于以 15 分钟的速率测量水位,但 LevelVUE™B10 还能够测量和报告在 15 分钟主要测量之间检测到的波峰阶段读数。在下图中,15 分钟的数据在每一端突出显示,点表示 15 分钟标记之间的实际水位。在这种情况下,检测到 1.79 m (5.87 ft) 的峰值,可以将其保存以供以后处理或用于立即采取行动,例如发出警报条件信号。注意:仅保存主要测量之间检测到的峰值。 单击图表以获得更大的图像。通常,波峰测量仪位于自动测量仪上游或下游几英尺到几英尺的位置。根据河流的坡度,这个距离可能会导致必须注意的两个仪表读数的差异。使用 LevelVUE™B10,在完全相同的位置测量主舞台数据值和波峰消除了这种差异。尽管 LevelVUE™B10 并非旨在消除波峰级规,但它确实提供了有关实际波峰是什么以及何时出现的有价值的信息。这些数据可以实时用于生成警报、在 GOES 系统上发送随机传输,或者只是记录下来以供将来参考。有关此产品的更多信息,请访问LevelVUE™B10 网页。
查看更多 >概述由 Goodrich 制造的 0871LH1 是一种检测结冰情况的传感器,以便采取适当的措施来防止损坏电力和通信线路、警告道路危险或防止风力涡轮机叶片或飞机上结冰翅膀。优点和特点可用于帮助防止损坏电力线,并警告结冰的道路危险、飞机机翼上的冰和风力涡轮机叶片上的冰当积冰达到 0.5 毫米时自动除霜详细说明0871LH1 使用共振频率来确定是否存在结冰条件。它的主要部件是一根自然共振频率为 40 kHz 的镍合金棒。当冰在棒上聚集时,增加的质量会导致共振频率降低。当频率降至 130 Hz(或 0.02 英寸冰层)时,内部加热器会自动为传感器除霜。风能应用0871LH1 可以检测风力涡轮机叶片上的冰,这是不可取的,因为:刀片可以将大块冰块扔到相当远的距离——这是一种极其危险、可能致命的情况。结冰会导致涡轮叶片、轴承和齿轮箱上的负载不平衡。冰会降低涡轮机的功率输出。0871LH1 可用于风力勘探应用,帮助预测潜在的风力发电场可能因结冰条件而停止运行的时间量。此外,传感器让用户知道冰何时阻止他们的风传感器提供数据。规格测量说明检测到冰/未检测到冰范围取决于状态(ICE = 1,NO ICE = 0)设定点当探头冰厚度超过 0.5 毫米 ±0.13 毫米(0.02 英寸 ±0.006 英寸)时,冰信号激活输出格式RS-422 输出以 9600 bps 的速度运行。工作温度范围-55° 至 +71°C储存温度范围-65° 至 +90°C随机振动7.9 克(DO-160C,E 类)震惊DO-160C工作电压18 至 29.5 伏直流电基径7.32 厘米(2.88 英寸)基础高度3.81 厘米(1.5 英寸)支柱直径3.10 厘米(1.22 英寸)支柱高度2.54 厘米(1.0 英寸)板尺寸7.37 x 7.37 x 0.22 厘米(2.9 x 2.9 x 0.085 英寸)杆直径0.64 厘米(0.25 英寸)杆高2.54 厘米(1.0 英寸)重量0.3 千克(0.7 磅)功耗@ 24 Vdc感应模式5 瓦(最大)除冰模式27 瓦(最大)操作模式传感无冰运行或探头冰厚度低于设定值除冰在探头冰厚度超过设定值的情况下运行离散输出信号冰信号(不结冰)打开结冰信号(检测到结冰)地面状态信号(正常运行)地面状态信号(检测到故障)打开RS-422 输出信号冰信号1 = 冰0 = 无冰失败状态1 = 失败0 = 没有失败(正常)内置测试 (BIT)受命在初始上电时执行。如果检测到并验证了故障,则冰检测器停止检测并报告结冰情况,禁用加热器,并报告故障。连续的硬件和软件 BIT 验证内部电子设备是否正常运行。电连接器机械的MS27474T10B199PN交配MS27474T10B199SN
查看更多 >气候信息显然是特定地区酿酒葡萄成功的最重要因素之一,在很大程度上控制着作物的生产力和质量,并最终推动经济的可持续性。太阳辐射、平均温度、极端温度、热量积累、成熟期间的昼夜温度、风、降水、湿度和水土平衡都在葡萄生长过程中发挥着重要作用。那么为什么不在您的葡萄园中测量这些参数呢? 北京盈仪生态科技有限公司 的气象站提供有关所有重要因素的信息。 气象站还将提供霜冻和高温警报、生长期天数、葡萄白粉病指数以及天气历史记录,以比较年份温和的辐射霜发生在静止、晴朗的夜晚,通常伴随着强烈的逆温。当冷空气排入低处或排水受阻的区域时,温度可能比整个果园的其他区域低得多。在这些条件下,可能只需要几度的防冻保护,可以通过自来水、飞行直升机或在狭窄的山谷中操作风力机来提供。要知道何时开始防冻保护,您首先需要知道果园的温度。气象站将提供霜冻警报(短信和/或电话)、灌溉计划的参考蒸发量值、冷却时间和冷却单位、蜜蜂小时数、生长期天数和其他农艺信息,以便在果园做出明智的决定。 气象站产生的参考蒸散量值将提供有关灌溉计划、节水节电的基本信息。温度、土壤湿度、湿度、风、叶片湿度、水流、井深和其他参数的测量都可以通过气象站数据记录器进行测量。通过蜂窝调制解调器传输的数据可在您的移动设备上实时获取。
查看更多 >数据采集器的设计适用于重型物体中的一些现场数据采集和条形码符号扫描,适合脱机使用。标识符也称为手持终端,是扫描条形码符号前扫描仪的播种机,与在线设备不同。具有恒定的编程能力,应用程序可以是一种功能强大的设备,以满足不同情况下的应用要求。 许多公司在工作的每一个阶段都写数据,几乎完成了手工工作,费时费力又出错。例如,在仓库工作管理中,所有日常活动(如收货、退货、发货和库存)都是手动完成的,并且编写和复制了复杂的表格和数据。即使计算机解决了部分手动写入的情况,也不可能改变将大量打印表的数据重新输入下一个计算机工作站时出现的瓶颈。通过使用数据采集器重新安排有效的工作流程,可以准确、及时地捕获每个列表中每个项目的情况,并在项目上注册条形码扫描。您还可以更改项目查询。文章信息通过调制解调器直接上传到数据中心。采用该设备后,数据描述的每个阶段都实现了数据的自动注册,从而避免了新的数据输入问题。每个用户都有自己的条形码编码区域,许多收集器可以识别几个或十个不同的代码,例如ean代码、UPC代码等。对于物流公司的应用,考虑了EAN128代码和Kudoba代码。因此,用户必须在购买时考虑其实际应用中的编码范围来选择适当的收集器。
查看更多 >1.如果启用 CPI 的设备正在运行并且数据记录器中有跳过的扫描,可以做什么?默认的 CPI 总线速度设置为 250 kB/s。速度可在您的 CRBasic 数据记录器程序中调整。使用 CRBasic 程序中的CPISpeed()指令来调整 CPI 总线带宽以满足以下最大组合(总)以太网电缆长度:15.2 m (50.0 ft) 的最大组合以太网电缆长度为 1000 kB/s500 kB/s,最大组合以太网电缆长度为 61.0 m (200.0 ft)250 kB/s,最大组合以太网电缆长度为 152.4 m (500.0 ft)2.当电压互感器和电流互感器的输出本质上是差分的时,为什么在 CRBasic 的ACPower()指令中使用单端测量?电压互感器和电流互感器提供差分输出,它们与正在测量的电路中的电压和电流电隔离。但是,无需将这些变压器的输出运行到数据记录器的差分输入中,并且不必要地消耗额外的数据记录器通道。在得出结论ACPower()指令中的单端测量与差分测量提供的性能相同之前,我们对抗噪性、接地回路的不准确性等进行了广泛的测试。请注意,由于电压互感器和电流互感器的电流隔离,数据记录器的地线没有连接到它们正在测量的电路的地线。换句话说,您可以将传感器的差分输出连接到数据记录器的单端输入。但是,这样做可能会导致数据记录器中的共模噪声抑制能力较差,并可能导致传感器和数据记录器之间的接地回路不准确。请注意,在本应用中,电压互感器和电流互感器的变压器隔离消除了这些顾虑。只需将其中一根电压互感器二次线和一根电流互感器二次线连接到数据记录器地线。在任何一种情况下,哪条线都会有所不同,因为相位信息允许测量沿任一方向流动的功率。如果在应该为正时测量负有功功率,则将连接到数据记录器的电压互感器的次级线反向。或者,您可以反转电流互感器上的次级线,但不要反转两对线。3.PC208W 是否支持 CR1000X?PC208W不支持 CR1000X.4.如果 CR1000X 损坏需要更换接线面板, 应该怎么办?将 CR1000X 返回 Campbell Scientific 维修,并填写返修单(RMA), 请参考 Repair and Calibration page.5.CR1000X 是否有类似于CR6的热敏电阻测量指令 Thermistor() ?无.6.CR1000X 和 CR1000 / CR6相比,功耗怎么样?空闲时,CR1000、CR6 和 CR1000X 在 12Vdc 时消耗的电流小于 1 mA。与 CR6 类似,CR1000X 具有更快的处理器,在启动和运行时需要更多功率。因此,在主动测量、串行通信或通过 USB 或以太网插入 PC 时,会产生更高的电流消耗。将 CR6 和 CR1000X 视为构建在同一个“平台”上可能会有所帮助。
查看更多 >风速风向仪兼容性说明以05108风速风向仪为例:风速风向仪安装05108-L 可以通过 17953 Nu-Rail 交叉接头或 CM220 直角安装支架连接到 CM202、CM204 或 CM206 横臂。或者,高清风监测器可以通过 CM216 传感器安装套件连接到我们的不锈钢三脚架顶部。风速风向仪风廓线研究风廓线研究测量许多风传感器。对于这些应用,LLAC4 4 通道低电平交流转换模块可用于增加由一个数据记录器测量的风监测器的数量。LLAC4 允许数据记录器控制端口读取风速传感器的交流信号,而不是使用脉冲通道。与 LLAC4 兼容的数据记录器有 CR200(X) 系列(仅限交流信号 ≤1 kHz)、CR800、CR850、CR1000、CR3000 和 CR5000。风速风向仪数据记录器注意事项05103 的螺旋桨在数据记录器上使用一个脉冲计数通道。它的风向标需要一个单端通道并接入一个激励通道(激励通道可以与其他高阻抗传感器共享)。风速风向仪编程05108 的螺旋桨由 CRBasic 中的 PulseCount 指令和 Edlog 中的指令 3(脉冲计数)测量。风向标由 CRBasic 中的 BrHalf 指令和 Edlog 中的指令 4 (Excite-Delay-SE) 测量。通常使用风矢量指令处理测量结果以输出。
查看更多 >要评估众多通用数据记录器模型并最终确定哪一个最能满足您的需求,您应该首先确定您的应用程序的需求和要求。如有必要,请查看任何相关文件、许可或法规。您对这些项目的熟悉将有助于确保您选择的数据记录器将满足您的合规性要求。注意:此处讨论的注意事项并不构成一个包罗万象的列表,而是提供了有助于我们的客户指导他们完成选择过程的常见注意事项。数据记录仪使用环境如果数据记录器不是针对其所在环境设计的,则数据记录器可能无法按预期运行或停止工作。极端温度您现场的高温和低温将决定您是否可以使用具有标准工作温度范围的数据记录器。如果您现场的高温和低温超出了数据记录器的温度能力,请选择具有扩展温度范围的数据记录器。振动和冲击如果您的数据记录器会受到振动(例如来自桥梁、矿山或建筑工地)的影响,请确保您的数据记录器能够承受这些条件。此外,如果您预计您的数据记录器会掉落或弹起,请验证它是否能够承受这些冲击。水暴露如果您的数据记录器将放置在潮湿或潮湿的环境中,请检查它是否可以处理湿度水平。您可以通过将数据记录器安装在密封的环境外壳内来保护数据记录器。选择适合您打算在现场使用的外壳内的数据记录器。要保持外壳内部干燥,请使用干燥剂。数据记录仪测量要求不同的传感器类型需要数据记录器上可以解释传感器信号的不同输入类型。传感器输入类型确定您需要测量的参数,然后确定您需要的传感器类型。查看您将使用的每个传感器的手册,以确定所需的数据记录器连接类型。(手册还应提供有关如何将传感器连接到数据记录器的信息。)传感器数量数据记录器为传感器输入提供的连接数量和类型差异很大。您需要确定您的数据记录器需要多少个传感器类型的传感器输入才能容纳所有传感器。扩张扩展外围设备可以显着扩展数据记录器可以测量的传感器的数量和类型。如果您将使用的传感器数量或类型超过数据记录器上可用的输入,您可以使用兼容的扩展外围设备。此外,考虑您设施的长期目标可能与当前目标有何不同,并需要数据记录器上的额外输入和/或输出。兼容性您可能已经拥有计划在数据采集系统中使用的传感器。确保这些传感器与您选择的数据记录器兼容。数据记录仪测量质量尽管数据采集系统的精度和分辨率可能与数据记录器的性能直接相关,但系统的精度通常由系统中精度最低的组件决定。准确性准确度是测量提供尽可能接近实际值的结果的能力。例如,测量值在实际值 ±0.1 范围内的数据记录器据说比在实际值 ±0.5 范围内产生测量值的数据记录器更准确。尽管您可以达到的总体精度取决于系统中精度最低的组件,但请检查您的数据记录器是否提供了适合您要求的精度级别。请注意,精度等级因温度范围而异。精确精度是对相同数量的重复测量之间的一致性程度。例如,一个数据记录器可以对同一样品进行 10 次测量,误差在±0.1 以内,据说比数据记录仪对同一样品进行 10 次测量,误差误差在±0.8 以内。使数据记录器的精度水平与您的测量数据需求相匹配。解决在测量中,分辨率是指可以检测到的量的最小变化。例如,检测到最接近的十分之一毫伏差异的数据记录器据说比检测到最接近毫伏的差异的数据记录器具有更高的分辨率。要提高绝对分辨率,请使用可能覆盖被测传感器输出范围的最低/最小固定电压范围。数据记录仪编程灵活性可编程数据记录器提供用于计划扫描以及开发和运行定制程序的选项。测量灵活性可编程数据记录器可以安排在指定条件下或响应事件时根据编程扫描速率扫描传感器。一些数据记录器不需要记录扫描中的每一个测量值。例如,如果传感器每 5 秒扫描一次(扫描速率),则可能只需要记录 15 分钟期间的平均读数(采样速率)。确保您选择的数据记录器具有适合您需要的灵活性。编程语言虽然一些数据记录器被硬编码为仅执行一组核心功能,但其他数据记录器具有内置的完整编程语言,允许用户灵活地开发和运行他们自己的定制程序。确定可能对数据记录器进行编程的用户的技能水平,以及您的设施开发自己的程序的需求。选择匹配良好的数据记录器。板载处理复杂的数据记录器可能具有可以计算每日最小值、最大值、平均值、总计或其他统计值的板载算法。此外,可以使用传感器提供的数据计算以下参数:密度高度、露点、蒸散量、热指数和风寒。数据存储灵活性通过提供现场统计和数学处理,复杂的数据记录器可以只记录计算值而不是所有测量值。这最大限度地减少了数据记录器需要存储和传输的数据量,从而延长了数据记录器内存变满和需要下载数据的时间。此外,使用较少的数据,可以降低检索数据的成本(取决于使用的方法),并且可以简化数据分析或审查过程。外部设备控制一些数据记录器可以通过编程来控制外部设备,例如在预设时间激活设备或响应测量的条件或事件。数据记录器可以启动或关闭电机、闸门、泵、净化器、阀门、注射器等。如果您需要数据记录器来控制外部设备,请验证数据记录器或与终端扩展外围设备组合的数据记录器是否具有这种能力。数据记录仪数据存储您的测量数据的价值不仅在于它的收集,还在于您在何时、何地以及如何需要时使用数据的能力,例如将数据传输到数据库或直接传输给用户;密切关注实时数据;监控平均值、最大值和最小值;查看一组历史数据;或寻找更长时期的趋势或模式。扫描和记录的频率了解传感器被扫描的频率,以及数据测量和/或计算值的记录频率,可以提供有用的信息来确定数据记录器在内存容量变满并需要下载之前可以记录数据多长时间。存储容量仅根据内存大小来选择数据记录器可能没有好处。相反,根据数据记录器可以存储多少读数来考虑存储容量可能更有益。数据记录器可能具有数千字节或兆字节的内存,但只能保存少量读数。查看数据记录器的内存大小和数据记录器可以存储的读数数量的规格。如果数据记录器的板载内存容量不足以满足您的项目,请查看是否有兼容的内存扩展外围设备可用。内存类型查看数据记录器的规格以确定它是使用填充和停止存储器,还是使用环形存储器。这可以帮助您确定您的设施需要多久下载一次数据,然后您可以相应地安排数据检索。电池支持的数据存储如果数据记录器因电源故障或断电而断电,有必要确保您的数据不会因此而丢失。不同类型的存储介质在这方面提供不同的保护。易失性存储介质,例如 SRAM,最终会丢失其数据。因此,易失性存储介质应由电池供电,以确保在数据记录器与其主电源断开连接时保持数据。非易失性存储介质,如 EEPROM 和闪存,在电源中断时不受影响;他们将维护他们的数据。如果您预计数据记录器的电源可能会经常出现计划内或计划外断电,请选择具有非易失性数据存储介质或电池供电的易失性数据存储介质的数据记录器。数据记录仪通讯数据记录器与数据采集系统中其他组件通信的能力取决于数据记录器使用的通信协议、数据记录器的集成通信能力以及数据记录器与通信外围设备的兼容性。通讯协议数据记录器对可用的不同通信协议的支持各不相同,例如 DNP3 或 Modbus。查看数据记录器支持的协议,以确定数据记录器是否与您的其他系统组件共享通用通信协议。IP通信确定数据记录器是否具有集成 IP 通信功能,例如集成以太网终端,或者是否可以与外部通信外围设备集成。现场选项根据您现场的限制,您可能不得不依赖现场选项,例如将数据记录器直接连接到 PC 或笔记本电脑的电缆。另一个现场选项是使用带有存储卡的外部数据存储设备,该存储卡可以传输并上传到异地的 PC 上。检查数据记录器与您正在考虑的各种数据检索和通信选项的兼容性。如果您需要使用电缆连接数据记录器和计算机,请计算所需的电缆长度。标准 RS-232 电缆的长度可能只有 50 英尺。为了将连接长度增加到几千英尺,需要一个转换器。遥测如果无线传输可用,您可以使用遥测外围设备远程传输数据。以下是一些可能的电信选项:以太网、多点网络、射频 (RF) 网络、卫星系统、短程调制解调器、固定电话、语音合成电话和蜂窝电话。检查数据记录器与您正在考虑的各种数据检索和通信选项的兼容性。每个电信选项都有自己的要求,应进行审查。例如,查看每个选项的传输距离或区域,以及其适用的服务要求。您可能会发现某个特定选项不可用或无法提供您需要的承保范围。通知和警报使用通信外围设备,可以对一些数据记录器进行编程,以定期向工作人员发送有关现场当前状况的通知。此外,如果发生非典型事件,可以对数据记录器进行编程以触发警报(例如电话、铃声、口哨、灯光等),以通知可以对其系统做出任何必要决策和调整的人员。确定数据记录器将使用哪些参数来自动发出通知或警报,并确保可以对数据记录器进行适当的编程。现场展示一些数据记录器提供内置键盘和显示屏,而其他数据记录器可能提供单独的便携式键盘和显示屏。人员可以使用这些设备来响应来自测量站点数据记录器的提示和消息。除了使用带显示器的键盘与现场数据记录器进行交互外,还可以使用笔记本电脑。数据记录仪电源要求在确定整个数据采集系统的功率预算时,应考虑数据记录器的功率需求。电源要求查看数据记录器列出的电源要求,以了解其在活动和静态状态下的典型电流消耗。电力调配一些数据记录器可以提供操作传感器和其他设备的电源。传感器控制为减少功耗,请考虑选择仅在读取读数时才能够打开传感器电源的数据记录器。功率预算一些数据采集系统安装在无法使用交流电源的位置,并且需要使用内部密封的可充电电池或碱性电池——与太阳能电池板等电池充电设备结合使用。无论使用何种电源,请确保您有足够的电源进行连续采样。使用功率预算估算数据记录器和整个数据采集系统的功率要求。
查看更多 >